Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Best Pract Res Clin Endocrinol Metab ; 36(4): 101662, 2022 07.
Article in English | MEDLINE | ID: covidwho-2258651

ABSTRACT

In this narrative review we provide an overview of the current literature on male hypogonadism and related comorbidities, also depicting the role of testosterone therapy (TTh) in the various settings. Male hypogonadism has been associated with major comorbidities such as type 2 diabetes mellitus, obesity and cardiovascular diseases, promoting a vicious cycle that may lead to further hypogonadism. The biological underpinnings of this association are currently under investigations, but clearly emerges the relevance of the hypothalamic-pituitary-gonadal axis. Hypogonadism has also been associated with increased risk of mortality. As such, TTh has the potential to oppose these patterns and improve cardiovascular and metabolic health in hypogonadal men. Clinical and observational data suggest that in males with hypogonadism, TTh, together with lifestyle changes and diabetes medications, may improve glycemia, reduce risk of progression to diabetes and provides positive effects on cardiovascular risk. Conversely, available data does not fully support any increased risk of prostate cancer in men under TTh. Of clinical relevance, a possible harmful role of hypogonadal status in men with COVID-19 eventually emerged.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Hypogonadism , Androgens/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Humans , Hypogonadism/complications , Hypogonadism/drug therapy , Hypogonadism/epidemiology , Male , Morbidity , Testosterone/therapeutic use
2.
JNCI Cancer Spectr ; 6(3)2022 05 02.
Article in English | MEDLINE | ID: covidwho-1878801

ABSTRACT

BACKGROUND: TMPRSS2, a cell surface protease regulated by androgens and commonly upregulated in prostate cancer (PCa), is a necessary component for SARS-CoV-2 viral entry into respiratory epithelial cells. Previous reports suggested a lower risk of SARS-CoV-2 among PCa patients on androgen deprivation therapy (ADT). However, the impact of ADT on severe COVID-19 illness is poorly understood. METHODS: We performed a multicenter study across 7 US medical centers and evaluated patients with PCa and SARS-CoV-2 detected by polymerase-chain-reaction between March 1, 2020, and May 31, 2020. PCa patients were considered on ADT if they had received appropriate ADT treatment within 6 months of COVID-19 diagnosis. We used multivariable logistic and Cox proportional-hazard regression models for analysis. All statistical tests were 2-sided. RESULTS: We identified 465 PCa patients (median age = 71 years) with a median follow-up of 60 days. Age, body mass index, cardiovascular comorbidity, and PCa clinical disease state adjusted overall survival (hazard ratio [HR] = 1.16, 95% confidence interval [CI] = 0.68 to 1.98, P = .59), hospitalization status (HR = 0.96, 95% CI = 0.52 to 1.77, P = .90), supplemental oxygenation (HR 1.14, 95% CI = 0.66 to 1.99, P = .64), and use of mechanical ventilation (HR = 0.81, 95% CI = 0.25 to 2.66, P = .73) were similar between ADT and non-ADT cohorts. Similarly, the addition of androgen receptor-directed therapy within 30 days of COVID-19 diagnosis to ADT vs ADT alone did not statistically significantly affect overall survival (androgen receptor-directed therapy: HR = 1.27, 95% CI = 0.69 to 2.32, P = .44). CONCLUSIONS: In this retrospective cohort of PCa patients, the use of ADT was not demonstrated to influence severe COVID-19 outcomes, as defined by hospitalization, supplemental oxygen use, or death. Age 70 years and older was statistically significantly associated with a higher risk of developing severe COVID-19 disease.


Subject(s)
COVID-19 Drug Treatment , Prostatic Neoplasms , Aged , Androgen Antagonists/therapeutic use , Androgens/therapeutic use , COVID-19 Testing , Humans , Male , Prostatic Neoplasms/drug therapy , Receptors, Androgen/therapeutic use , Retrospective Studies , SARS-CoV-2
4.
Eur Urol ; 81(3): 285-293, 2022 03.
Article in English | MEDLINE | ID: covidwho-1568696

ABSTRACT

BACKGROUND: Men are more severely affected by COVID-19. Testosterone may influence SARS-CoV-2 infection and the immune response. OBJECTIVE: To clinically, epidemiologically, and experimentally evaluate the effect of antiandrogens on SARS-CoV-2 infection. DESIGNS, SETTINGS, AND PARTICIPANTS: A randomized phase 2 clinical trial (COVIDENZA) enrolled 42 hospitalized COVID-19 patients before safety evaluation. We also conducted a population-based retrospective study of 7894 SARS-CoV-2-positive prostate cancer patients and an experimental study using an air-liquid interface three-dimensional culture model of primary lung cells. INTERVENTION: In COVIDENZA, patients were randomized 2:1 to 5 d of enzalutamide or standard of care. OUTCOME MEASUREMENTS: The primary outcomes in COVIDENZA were the time to mechanical ventilation or discharge from hospital. The population-based study investigated risk of hospitalization, intensive care, and death from COVID-19 after androgen inhibition. RESULTS AND LIMITATIONS: Enzalutamide-treated patients required longer hospitalization (hazard ratio [HR] for discharge from hospital 0.43, 95% confidence interval [CI] 0.20-0.93) and the trial was terminated early. In the epidemiological study, no preventive effects were observed. The frail population of patients treated with androgen deprivation therapy (ADT) in combination with abiraterone acetate or enzalutamide had a higher risk of dying from COVID-19 (HR 2.51, 95% CI 1.52-4.16). In vitro data showed no effect of enzalutamide on virus replication. The epidemiological study has limitations that include residual confounders. CONCLUSIONS: The results do not support a therapeutic effect of enzalutamide or preventive effects of bicalutamide or ADT in COVID-19. Thus, these antiandrogens should not be used for hospitalized COVID-19 patients or as prevention for COVID-19. Further research on these therapeutics in this setting are not warranted. PATIENT SUMMARY: We studied whether inhibition of testosterone could diminish COVID-19 symptoms. We found no evidence of an effect in a clinical study or in epidemiological or experimental investigations. We conclude that androgen inhibition should not be used for prevention or treatment of COVID-19.


Subject(s)
Androgen Antagonists/therapeutic use , Anilides/therapeutic use , Benzamides/therapeutic use , COVID-19 Drug Treatment , Nitriles/therapeutic use , Phenylthiohydantoin/therapeutic use , SARS-CoV-2/isolation & purification , Tosyl Compounds/therapeutic use , Aged , Aged, 80 and over , Androgens/therapeutic use , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Sweden/epidemiology , Testosterone , Treatment Outcome
6.
Cell Stem Cell ; 27(6): 876-889.e12, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-927293

ABSTRACT

SARS-CoV-2 infection has led to a global health crisis, and yet our understanding of the disease and potential treatment options remains limited. The infection occurs through binding of the virus with angiotensin converting enzyme 2 (ACE2) on the cell membrane. Here, we established a screening strategy to identify drugs that reduce ACE2 levels in human embryonic stem cell (hESC)-derived cardiac cells and lung organoids. Target analysis of hit compounds revealed androgen signaling as a key modulator of ACE2 levels. Treatment with antiandrogenic drugs reduced ACE2 expression and protected hESC-derived lung organoids against SARS-CoV-2 infection. Finally, clinical data on COVID-19 patients demonstrated that prostate diseases, which are linked to elevated androgen, are significant risk factors and that genetic variants that increase androgen levels are associated with higher disease severity. These findings offer insights on the mechanism of disproportionate disease susceptibility in men and identify antiandrogenic drugs as candidate therapeutics for COVID-19.


Subject(s)
Androgens/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Patient Acuity , Receptors, Coronavirus/metabolism , Signal Transduction , Adult , Androgen Antagonists , Androgens/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Antiviral Agents/therapeutic use , COVID-19/complications , Cells, Cultured , Chlorocebus aethiops , Drug Evaluation, Preclinical , Female , Humans , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Organoids/drug effects , Organoids/virology , Risk Factors , Sex Factors , Vero Cells , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL